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Abstract

The longitudinal coherence of free-electron laser (FEL) radiation can be enhanced by seeding the

FEL with high harmonics of an optical laser pulse. The radiation produced by high-harmonic gen-

eration (HHG), however, has a fast-varying temporal profile that can violate the slowly-varying en-

velope approximation and limited frequency window that is employed in conventional free-electron

laser simulation codes. Here we investigate the implications of violating this approximation on

the accuracy of simulations. On the basis of both analytical considerations and 1-D numerical

studies it is concluded that, for most realistic scenarios, conventional FEL codes are capable of

accurately simulating the FEL process even when the seed radiation violates the slowly-varying

envelope approximation. We additionally discuss the significance of filtering the harmonic content

of broadband HHG seeds.
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I. INTRODUCTION

The ability of free-electron lasers to produce coherent, high-power pulses of tunable radia-

tion in spectral regions not accessible with conventional sources makes them highly attractive

to many areas of research [1, 2]. The recent advances at XUV and hard x-ray wavelengths

at the Linac Coherent Light Source [3], FLASH [4] and SPring-8 (Japan) [5] have opened a

new era of research for the light source user community.

Radiation in very short-wavelength FELs has generally been produced through the pro-

cess of self-amplification of spontaneous emission (SASE) [6] where random microbunching

(shot noise) in the driving electron bunch provides the initial seed for the FEL instability,

which is then strongly amplified through an undulator typically many gain lengths long.

The longitudinal coherence of SASE output is normally limited to the so-called cooperation

length [7], Lc = (λR/λu)LG, where λR is the FEL resonant wavelength, λu is the undulator

period and LG is the gain length.

The longitudinal coherence length of FEL radiation can be extended beyond Lc via seed-

ing by an appropriately coherent external radiation source. However, conventional lasers

operating at wavelengths shorter than ∼ 200 nm wavelength are not readily available. Re-

cently there has been great interest at numerous laboratories in seeding FELs directly with

coherent radiation produced by high-harmonic generation (HHG) [8] from intense visible

laser pulses interacting with a gas. This scheme has been tested experimentally in single

pass FEL amplifiers to wavelengths as short as ∼ 60 nm (13th harmonic of Ti:sapphire)

[9, 10] and, in principle, can work down to the few-nm regime.

In HHG an intense drive laser pulse ionizes atoms in a low-density gas medium. Each

ionized electron is accelerated in the continuum by the laser’s electric field and can recollide

with the parent ion [8]. Upon recombination, the energy gained by the electron due to the

laser field is emitted in the form of a high-energy photon. The most energetic photons are

emitted by electrons ionized at a fixed offset from the extrema of the driving pulse. Due

to this condition, HHG emission nominally comprises a series of sub-femtosecond spikes,

one for each half-cycle of the driving laser. This corresponds to a spectrum containing all

odd harmonics of the driving frequency, up to a cut-off determined by the wavelength and

intensity of the driving laser, as well as the ionization potential of the gas. One characteristic

of HHG sources is that the power at low harmonics (e.g., q ≤ 7) of the drive laser is many
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orders of magnitude greater than those at high harmonics (e.g., q ≥ 21).

The effects of an HHG seed’s rich spectral content and sub-femtosecond temporal struc-

ture upon FEL gain have been considered previously by Giannessi et al. [11], McNeil et

al. [12] and Wu et al. [13], among others. In Refs. [11] and [12] the authors dismiss such

effects reasoning that since the FEL gain bandwidth typically encompasses only a single

harmonic of the seed, the presence of the other harmonics will therefore negligibly affect

FEL dynamics. In both cases, simple filtering of the HHG seed in Fourier space was carried

out in order to use numerical codes based on the slowly-varying envelope approximation

(SVEA); in general, such codes support only a limited frequency domain around a central

frequency. Such filtering can lead to non-causal changes in the temporal structure, e.g.,

making radiation artificially appear in the valleys between the strong HHG spikes. Wu et

al. discuss smearing of the seed’s temporal structure within an analytical framework.

Here we revisit the issue of the use of SVEA in FEL simulation and, more specifically, its

use when modeling the HHG seed’s temporal and spectral structure vis-à-vis FEL amplifica-

tion. Since the SVEA assumes a radiation amplitude and phase that implicitly varies slowly

compared to a central wavelength λ0 and a radiation spectral content that can be mapped

to a relatively narrow region around λ0, it is not immediately clear that conventional FEL

codes operating within the constraints of SVEA will accurately capture all the important

details of HHG seeding. For instance, high-harmonic generation can produce bursts of radi-

ation as short as ≈ 100 attoseconds [14], which for a resonant FEL wavelength λR = 32 nm

corresponds to just a single cycle and thus contains a broad spectral content extending far

beyond the 32-nm region.

A related approximation used by nearly all conventional FEL simulation codes is so-called

undulator-period-averaging in which the particle-field interaction is locally in time and z

reduced to only the resonant component. Since a particle slips relative to the radiation field

one resonant wavelength in time for each undulator period travelled in z, as with SVEA

it is not clear that such averaging will work well for temporal radiation structures with

spikes of order a single resonant period in duration. At the other extreme — wavelengths

much longer than that corresponding to FEL resonance — it is not clear that the strong

radiation components in the HHG spectrum at the low harmonics of the drive laser can be

safely neglected in terms of their effects upon the particle dynamics and, if not, whether the

combination of spectral filtering and undulator-period averaging accurately capture these
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effects.

In the remainder of this paper we study these various issues beginning with Sec. II where

we give qualitative arguments for why the SVEA in 1-D geometries can handle a surprisingly

wide spectral content range for an FEL seed. In Sec. III we introduce the non-SVEA code

Aurora and discuss our procedures for filtering the full spectral content of a wideband seed

for use in a conventional, SVEA-based code similar to Perseo [15]. We also summarize a

linearized Vlasov-Maxwell model whose details are given in Appendix A that is also used

for later comparison of results. We then use these tools in Sec. IV to explore non-SVEA

effects in the FEL response to first extremely narrow radiation spikes and then to the rich

spectrum of an HHG seed, discussing the regimes in which an HHG’s seed’s spectral content,

especially the high intensity, low harmonic components, may affect FEL gain at the resonant

component. Here we also examine the case where the gain bandpass is sufficiently broad to

include multiple HHG harmonics. We conclude in Sec. V with a brief summary.

II. THE SLOWLY-VARYING ENVELOPE APPROXIMATION IN FEL CODES

Here we examine the validity of the SVEA in the context of seeded FELs, where the

input radiation’s longitudinal profile violates the SVEA.

Simulating gain in a free-electron laser involves the evaluation of the combined action of

the undulator and radiation fields on the electrons at each position along the undulator, as

well as the evaluation of the emitted field, based on the electron positions and velocities at

that point. Generally these interactions are averaged over one or more undulator periods,

with all variables propagated from one undulator position to another. At any given inter-

action point within the classical framework, the effect of the radiation on the electrons is

independent of the emission of radiation by the electrons. From a numerical standpoint the

effect of a seed is entirely mediated by the electrons, in the sense that the seed causes energy

modulation and then microbunching, which in turn causes emission of radiation. When

the microbunched electrons radiate, the presence of the seed radiation has no explicit effect

on the newly emitted radiation and the two radiation fields add linearly. This view of the

emission process is completely independent of the adoption of the SVEA.

Radiation emission is calculated from Maxwell’s wave equation for the transverse com-

ponents of the field’s magnetic vector potential in the Lorenz gauge, "A, and for the source

4



current density, "J ,
(

∂2

∂z2
−

1

c2
∂2

∂t2

)

A⊥ = −
1

ε0c2
J⊥ , (1)

where c is the speed of light and ε0 is the vacuum permittivity. In this paper we restrict

ourselves to a 1-D model and have accordingly dropped the diffraction term, ∇2
⊥
A⊥.

At this point one may proceed in two different fashions in regards to the eventual ap-

plicability of the SVEA in the context of FEL emission. If we exploit our 1-D assumption

without worrying about a future extension to higher dimensionality, one may factor the

left-hand side of Eq. (1) to obtain

(

∂

∂z
+

1

c

∂

∂t

)(

∂

∂z
−

1

c

∂

∂t

)

A⊥ = −
1

ε0c2
J⊥. (2)

With B⊥ = ∇ × A⊥ and E⊥ = −∂A⊥/∂t, one may separate Eq. (2) into two separate

equations for the forward-going wave E⊥ − "z × cB⊥ and the backward-going wave E⊥ +

"z × cB⊥. In the FEL context, this result was previously obtained by Maroli [16]; in the

plasma simulation field this method of advancing Maxwell’s equation for electromagnetic

codes has been known since at least the 1970’s [17] (and perhaps dates back 50 years earlier

to Sommerfeld). Given our focus upon short wavelength FELs for which there is no resonant

gain in the backward wave, we neglect it and set cB⊥ = "z × E⊥ exactly. We then make

a Galilean transformation to the frame of reference moving forward in z at velocity c by

carrying out the substitutions t̂ = t − z/c and ẑ = z, resulting in the exact first order

equation
∂

∂ẑ
E⊥(t̂) = −

1

2ε0c
J⊥ . (3)

This equation can be integrated forward in z in either the time or frequency domain without

requiring adoption of the SVEA (of course, accurate evaluation of high frequency components

necessitates that E⊥ and J⊥ be resolved sufficiently finely on the numerical t̂ grid).

However, extension to higher dimensionality and including physical effects such as diffrac-

tion brings in non-trivial complications, even for the forward-going radiation wave because

in the off-axis directions one will no longer have "E and "B lying entirely within the transverse

plane. Accordingly, we proceed along a second path that will illustrate the approximations

required for the SVEA and, using the substitutions mentioned above, rewrite Eq. (1) as

(

∂2

∂ẑ2
−

2

c

∂2

∂ẑ∂ t̂

)

A⊥ = −
1

ε0c2
J⊥. (4)
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The field and source current may be represented as the products of envelopes and oscillations

at an angular frequency ω0 = 2πc/λ0, where λ0 is typically chosen equal to the resonant

wavelength λR (and in an SVEA code ω0 is the center of the frequency window),

A(ẑ, t̂) = A0(ẑ, t̂) e
−iω0 t̂,

J(ẑ, t̂) = J0(ẑ, t̂) e
−iω0 t̂,

where we have dropped the ⊥ subscript for clarity. Notably, this representation makes no

assumptions regarding the envelopes — it still allows for variations on arbitrarily short

timescales. Hereby Eq. (4) can be recast as

2iω0

c

∂A0

∂ẑ
= −

1

ε0c2
J0 −

∂2A0

∂ẑ2
+

2

c

∂2A0

∂ẑ∂ t̂
. (5)

The slowly-varying envelope approximation consists of dropping the last two terms on

the right-hand side (r.h.s.) of Eq. (5). SVEA is applicable provided that (i) |∂2A0/∂ẑ2| (

2ω0/c |∂A0/∂ẑ| and (ii)
∣

∣∂2A0/∂ẑ∂ t̂
∣

∣ ( 2ω0 |∂A0/∂ẑ|. Condition (i) applies strongly for the

forward wave component of essentially all realistic FEL configurations, especially those with

λR ( λu since for ρ ≤ 10−2 the exponential gain length LG ≥ 5λu ) λR, and the rate of

change of A0 along the undulator scales as the gain length, ∂A0/∂ẑ ∼ A0/LG. Here ρ is the

FEL Pierce parameter, ρ = 1/(2γR) [(I/IA)(λuau[JJ ])2/(2πΣb)]
1/3, where γR is the electron

bunch resonant Lorentz factor, I/IA is the bunch peak current normalized to the Alfvén

current, Σb is the bunch cross-section, λu and au are respectively the undulator period and

rms strength parameter, and for a planar undulator [JJ ] is the difference of Bessel functions

[J0(ξ) − J1(ξ)] with ξ ≡ a2u/[2(1 + a2u)]. The gain length is LG = λu/(4
√
3πρ). Although

the backward wave can violate condition (i) as mentioned above, there is no resonant gain

for this component and its effective strength is a factor ∼ O(γ2λu/lb) less than the forward

wave where lb is the electron bunch length.

With regard to condition (ii) in Eq. (5), the ∂2A0/∂ẑ∂ t̂ term is a correction that is

relevant only when the change in the field, ∂A0/∂ẑ, is fast-varying in t̂ — therefore, the

initial radiation seed, which is invariant with z in the 1-D approximation whatever its

spectral content, does not contribute to this term.

Strong initial modulations on the bulk current or externally produced initial microbunch-

ing bring about effects such as coherent spontaneous emission that might violate condition

(ii); these have been discussed elsewhere [18, 19] and are outside the scope of our focus on
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seeded FELs. On the other hand, whether or not such modulations in the electron beam may

develop in z in response to structures in the seed whose characteristic frequency ω is far from

ω0 depends on their evolution with z. Realistic FELs with ρ ( 1 will have resonant growth

only for modulations whose frequencies lie within a narrow bandpass ∆ω ∼ ρω0 centered on

ω0 (ignoring higher harmonics and presuming λ0 = λR). Non-resonant seed structure are

expected to lead at most to short-lived (in z) modulations in electron beam energy and pon-

deromotive phase. Unless these modulations are sufficiently strong to either affect growth

at the central resonant wavelength λR (e.g., strongly increasing the coarse-grained energy

spread and thus reducing gain) or to shift growth to neighboring wavelengths (e.g., sideband

formation), one expects condition (ii) to remain valid and application of the SVEA to be

justifiable in the context of coherent radiation emission even when the initial field envelope

is fast-varying (in phase or amplitude) compared to ω0. In the next section we describe

two 1-D codes we used to explore these expectations numerically: a non-SVEA code which

includes the last term on the r.h.s. of Eq. (5), and a conventional SVEA code that does not.

III. SIMULATION CODE, SEED FILTERING, AND ANALYTICAL VLASOV

MODEL DESCRIPTIONS

A. Non-SVEA, 1-D Code Aurora

The non-undulator-averaged, non-SVEA code used is Aurora [20]. As a multi-frequency

code it shares a number of features with MUFFIN by Piovella [19]. We note that Campbell

et al. [21] have developed a fully 3D, non-SVEA code that also follows Piovella and advances

the wave equation (i.e., our Eq. (5) with diffraction terms) in Fourier space. In Aurora,

the FEL interaction is simulated within a moving time window of duration LλR/c, where

L is an integer, and adopts periodic boundary conditions. As the window propagates down

the undulator at a constant speed of +c, the evolution of the radiation field and the electron

positions and energies are computed at N points per undulator period. The coordinate

within the window is the phase measured relative to a resonant, monochromatic plane wave,

ϕ = kR(z − ct) where kR = 2π/λR is the resonant wavenumber. The usual ponderomotive

phase is θ = ϕ + Z where Z = kuz is the distance along the undulator normalized by the

undulator wavenumber ku = 2π/λu.
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In Aurora the radiation is represented by the transversely-polarized, normalized mag-

netic vector potential, a(z,ϕ) = eAx(z,ϕ)/mc. Recording this on a grid of N points per

wavelength allows a simulation bandwidth of 2λR/N < λ < LλR. The electron bunch is

represented by a set of P macroparticles whose weights, wi, determine the number of elec-

trons represented by each. The macroparticles are free to move within the window (i.e., are

not confined to “bins”, as in undulator-period-averaged codes) with any electrons escaping

through the back of the window re-entering through the front. Initial shot-noise microbunch-

ing can either be modeled by a Poissonian distribution of either macroparticle displacement

[22, 23] or weights wi as suggested by McNeil [24].

The bunch cross-section Σb is assumed to be constant and matched to the radiation cross-

section, and, given our 1-D geometry, diffraction effects are not considered. Our studies

adopt a linearly-polarized undulator with constant period λu and constant rms strength

parameter au. The transverse current density at location z, Jx(z,ϕ), is evaluated through

Jx(z,ϕ) =
e
√
2au
Σb

cos(kuz)
P
∑

i=1

wi

γi
C(ϕ − ϕi), (6)

where ku = 2π/λu is the undulator wavenumber, i runs over the macroparticle indices,

γi are the macroparticle Lorentz factors, and ϕi are the resonant radiation phases at the

macroparticle locations. The distribution C represents the particle-in-cell weighting applied

to the macroparticles in order to project their distribution onto the radiation grid. In

Aurora, the current density Jx is transformed to Fourier space, J̃x(z,ω) =
∫

dt Jx(z, t) eiωt,

and filtered with a Gaussian of width ∼ 30ω0 centered at ω = 0 in order to reduce high-

frequency noise. The result is then inserted into the Fourier-transform of Eq. (4), omitting

the second derivative with respect to z:

d

dz
Ãx(z,ω) =

1

2iω

1

ε0c
J̃x(z,ω), (7)

to compute the field evolution.

Macroparticle energies and positions are propagated using

dγi

dz
= −

√
2eau

γimc2
cos(kuz)Ex(z,ϕi), (8)

and
dϕi

dz
= −

kR
2γ2

i

{

1 + a2u [1 + cos(2kuz)]
}

(9)
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with Ex = −∂Ax/∂t. The cosine term in Eq. (9) corresponds to the oscillation of the

electron’s longitudinal velocity that is characteristic of planar undulators, naturally leading

to the emission of odd radiation harmonics of the fundamental. Since Aurora does not

explicitly compute the transverse particle trajectories, the above equations omit higher or-

der terms (relating zi and ϕi) in the longitudinal trajectories. As normally done in FEL

simulation codes, the radiation field contribution (i.e., the quiver velocity) to Eq. (9) is

neglected.

B. SVEA Code and the Initialization of the Radiation Field

The conventional undulator-period-averaged SVEA code used for the studies here is a

1-D code based on the model of Perseo [15], against which it has been benchmarked.

The time grid is typically λ0/c wide; hence, there is support for angular frequencies in the

range [ω0/2 , 3ω0/2]. A key first step towards using the SVEA code to simulate the FEL

response to a broadband seed is the requirement to re-bin the seed onto a relatively coarse

(relative to that of Aurora) time grid, while ensuring important characteristics of the seed

are retained. The re-binning process consists of two steps: First, a Gaussian spectral filter

of root-mean-square (rms) width ω0/(2π) centered on ω0 is applied. Here ω0 = 2πc/λ0,

where λ0 is the bin size, which we assume to be equal to the FEL’s resonant wavelength λR.

This spectral filter serves to remove spectral components of extremely high and extremely

low frequencies that may otherwise lead to aliasing anomalies; at the same time the filter

remains broad enough to preserve the temporal profile of the seed — and therefore of the

FEL output during early stages of gain — on scales of ! λ0.

Second, the filtered radiation field is transformed to the time domain and split into

sections of length λ0. The binned field then comprises the complex amplitudes of the fun-

damental spectral component of the field in each section. Figure 1 illustrates the effects of

this procedure upon a sample seed. Note that this is carried out on the electric field, E,

rather than the magnetic vector potential A. In order to allow easier comparison of results

from the two simulation code, the same process is applied to Aurora radiation output.

In the frequency domain, this filtering process is equivalent to multiplication of the input

field E(ω) with a filter function Wλ0
(z1,ω) that is the product of a Gaussian filter and the

Fourier transform of a top-hat of width λ0, centered at the bin location z1 = ct − z. On a
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FIG. 1. (Color) A representative example of binning a broadband field (blue curve) to a grid of

spacing λ0 for use in a SVEA code. The discontinuous red curve sinusoids represent the phase and

amplitude obtained for the fundamental frequency component within each bin.

discretized mesh the correct filter to convolve with is

Wλ0
(z1,ω) =

√
2π

ω0
exp[−2π2(ω − ω0)

2/ω2
0]

×
sin(πω/ω0)

sin[πω/(Nω0)]
exp(−iz1ωc), (10)

where λ0/N is the data point spacing on the grid on which the full seed is discretized.

C. Analytical Model for Growth in the Exponential Gain Regime

For another point of reference to compare our simulation code results, we have developed

an analytical model based on the linearized Maxwell-Vlasov equations (within the SVEA)

similar to the development in Refs. [25, 26] but extended to treat fast-varying field envelopes

that violate the SVEA. Here we briefly summarize our new results with fuller details given

in Appendix A.

For a seed field A(θ, 0), the field at a given distance along the undulator Z = kuz, and a

given ponderomotive phase, θ = kR(z − ct) + kuz, is expressed as

A(Z, θ) = g(Z, θ) ∗ A(0, θ),

where ∗ represents convolution with respect to θ. Previous treatments have employed the

saddle-point approximation when evaluating an expression for g(Z, θ), thereby precluding

the correct modeling of fast-varying seed envelopes. In order to allow such envelopes to be

modeled, in Appendix A we avoid this approximation and derive an expression based on the
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FIG. 2. (Color) Evolution at various z̄ locations of the intensity of the radiation A for a system

seeded with a single ultra-short spike of rms width z̄1 = π · 10−3 (corresponding to λR/8) located

at z̄1 = 0. The thick gray curve is from the analytical model, the solid blue from the non-SVEA

code Aurora, and the dashed red curve from the conventional SVEA code. The latter almost

perfectly overlaps the blue curve.

generalized hypergeometric function pFq [cf. Eqs. (A9) and (A11)]:

g(Z, θ) = δ(Z − θ)

+ 8i(Z − θ)θρ3
0F2

(

;
3

2
, 2; 2i(Z − θ)2θρ3

)

H(Z − θ), (11)

where H is the Heaviside step function. In Sec. IVA, we compare the linearized solution

from Eq. (11) for an ultrashort seed with numerical simulation results.

IV. COMPARISON OF NON-SVEA & SVEA SIMULATION RESULTS

Now we compare Aurora results with those from the SVEA code and, in one case, from

our analytic model. We first examine the FEL response to an ultrashort input seed and

then go on to examine several situations involving HHG seeds.

A. Ultrashort seeds

Our first simulation study involves an FEL seeded with a single ultra-short spike of

radiation, whose high frequency components strongly violate the SVEA. The relevant FEL

parameters include resonant wavelength λR = 32 nm, undulator wavelength λu = 20mm and

rms strength au = 0.5, and a monoenergetic, zero emittance electron beam with γ = 625
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and a current density equivalent to an FEL parameter ρ = 0.002. The following figures use

normalized, “Milanese school” units for space, time, and field measures

z̄ = 2kuρz,

z̄1 = 2kuρ
β̄z

1− β̄z
(ct− z) ,

Ā =
kRau[JJ ]

4γ2
Rkuρ2

e

mc
A,

where β̄z =
√

1− 1/γ2
R is the mean normalized electron velocity in z.

Our results show that even for this case where the input seed amplitude exhibits significant

variations on the scale of a resonant wavelength, there is excellent agreement between results

from the SVEA and non-SVEA codes and the analytical model in the great majority of

cases. Figure 2 presents a comparison between the radiation output profiles from the non-

SVEA code Aurora, the Perseo-like SVEA code mentioned previously, and the linearized

analytical model at different stages of gain for a case where the initial seed had an Gaussian

profile with amplitude A0,seed ∼ e−(ct)2/2σ2
seed and rms duration σseed = λR/8. In terms of

normalized variables, the rms width of the seed spike is z̄1 = π · 10−3 (in other words, much

shorter than the cooperation length Lc. In the SVEA code the time grid spacing for the

radiation and particle quantities is λR/c and the central wavelength λ0 = λR. The evolution

of the output radiation profiles illustrate the high degree of correspondence between the

results yielded by the different approaches. At z̄ = 10 the simulations approach saturation

and predictably begin to deviate from the analytical model. Simulations of other ultrashort

seeds with rms widths as short as ∼ λ0/100 showed similar excellent agreement between

results from the SVEA code initialized from a filtered seed and the non-SVEA Aurora and

analytic model.

B. Full HHG Spectrum Seeding

In order to test further the capabilities of the simulation codes we turn to an example

that better illustrates actual HHG seeding, with an input seed spectrum comprised of odd

harmonics of a hypothetical drive laser. In the time domain, this corresponds to a sequence

of ultra-short spikes, two for each cycle of the driving laser. We simulate seeding with

an idealized infinite sequence of such spikes by using a periodic simulation window of size

λd = 800 nm, the drive laser wavelength. FEL resonance was set to λR ≈ 3.14 nm, the 255th
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FIG. 3. (Color) Relative intensities of harmonic orders 1–35 and 245–299 of an input HHG seed

spectrum. The shaded green Gaussian around the 255th harmonic (also plotted on a logarithmic

scale) represents the FEL gain curve for ρ = 5× 10−3.

harmonic of the λd. Other relevant simulation parameters include λu = 5mm, au = 0.5, γ =

998, and FEL parameter ρ = 5×10−3. The corresponding input spectrum is shown in Fig. 3

where we also presumed that all harmonics are exactly in phase. The adopted spectrum has

an exponential drop-off of intensity at the lowest harmonics and a plateau region of constant

intensity per harmonic, in line with theoretical predictions and experimental observations

[27]. The normalized amplitude of each of the plateau harmonics (q = 21 to q = 281) is

Āh = 2.3× 10−5.

Despite the large electric fields associated with the seed’s long-wavelength components,

their dimensionless amplitudes aseed = eAseed/(mc) are still much less than the undulator

parameter au, therefore we may continue to disregard their direct contribution to electron

motion (cf. Eq. (9)). Additionally, although in reality these long-wavelength components

are likely to diffract significantly over the course of FEL gain (or even during pre-undulator

transport), by neglecting diffraction effects we may consider a limiting case in terms of their

potential effect on gain.

Figure 4 plots simulation results at an early stages of gain, z̄ = 4, and close to FEL

power saturation, z̄ = 14, where |Ā| ≈ 1. Comparing the time-dependent output profiles, it

is clear that the SVEA code results match those from Aurora very closely — to within the

few percent level — at all stages of gain. The radiation phases exhibit a similar degree of

correspondence. For purposes of comparison here, theAurora results have also been filtered

and binned according to the procedure outlined in Sec. III B. This does not, however, limit
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their validity, as we have verified that the filter’s bandwidth covers all spectral components

that experience gain.

To demonstrate the sensitivity of the SVEA code results to details of the initial Gaussian

spectral filter described in Sec. III B, we have also plotted results for filters with both wider

bandwidths (1.67ω0/2π) and a narrower one (0.1ω0/2π). For the case with a broader filter,

the high intensities at low harmonics of the drive laser lead to an anomalous contribution to

the seed that distorts the gain profile, as well as the total output power. In the narrowband

case the seed’s initially sharp temporal profile is smeared out, and thus also the profile of the

output. This smearing does not, however, generally lead to large deviations in output power

— especially at advanced stages of gain. This is because even the narrow filter’s bandwidth

still covers most of the FEL’s gain bandwidth, and there is no interplay between different

spectral components.

Based on the preceding analytical arguments and numerical analysis, it appears possible

to accurately simulate FELs seeded with broadband radiation using conventional single-

frequency codes. This is in part a manifestation of the strong mode selection that takes

place during FEL gain.

C. Evolution of HHG Harmonics within FEL Gain Bandpass

The full harmonic content of the seed is clearly also of importance in cases where the

gain bandwidth encompasses more than one harmonic of the seeding laser. This may readily

occur at high harmonic orders, where the relative difference in frequency between adjacent

harmonics becomes small. We consider again the example from the previous subsection:

seeding with the 255th harmonic of an 800 nm driving laser at 3.14 nm. The relative frequency

separation between adjacent harmonics of that order is (ω255 − ω257)/ω255 = 1− 255/257 ≈

7.8 × 10−3, which is comparable to the gain bandwidth of a hypothetical FEL with Pierce

parameter ρ = 5 × 10−3. In this regime the presence of harmonics other than the primary

seeding one may affect the gain dynamics, particularly near saturation.

We simulate this scenario in Aurora with a full seed comprising all plateau harmonic

orders from 21st to 281st at equal intensities, as illustrated in Fig. 3, and also with a filtered

seed only containing the 255th harmonic. The results are presented in Fig. 5. Due to

the imposed absence of initial electron bunch shot noise, for the case of the filtered seed
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FIG. 4. (Color) Radiation output profiles versus time at z̄ = 4 (top) and z̄ = 14 (bottom) resulting

from broadband HHG seeding (cf. seed spectrum in Fig. 3). The simulation window has a width

of λd = 800 nm with periodic boundary conditions. The black line represents the initial seed

profile, with the characteristic two spikes per driving laser wavelength — this seed profile has been

subtracted from the other results, leaving only radiation generated during FEL gain. Non-SVEA

Aurora results are in blue while SVEA code results using a seed filtered with a Gaussian of RMS

width ω0/2π are in red. The solid (dotted) green lines represent SVEA simulation results where

the input seed was filtered with a 1.67× broader (10× narrower) Gaussian bandpass.

the 255th harmonic is the only spectral component that achieves appreciable gain. The

additional harmonics in the full seed undergo gain in accordance with the FEL’s gain curve

(inset). This difference in behavior leads to different saturation dynamics: the full seed enters

saturation sooner, but takes longer to reach maximum intensity. Correspondingly, there is

a period around z̄ ≈ 15 where the filtered seed actually yields a marginally greater intensity

than the full seed. The “tapered saturation” exhibited by the full seed is attributable to

the fact that different modes within the gain curve saturate at different times, and in doing
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FIG. 5. (Color) Evolution of HHG seed harmonics around the FEL-resonant 255th harmonic of an

800 nm driving laser, for the cases of a full and a filtered seed. The full seed (cf. Fig. 3) contains

several harmonics that fall within the gain bandwidth (ρ = 5 × 10−3), whereas the filtered seed

case contains only the 255th harmonic. Spectral components of FEL output resulting from the full

seed are represented by solid lines, where the gray line is total normalized field due to harmonics

249 through 261; the output from the filtered seed is represented by the dotted green line. Inset:

harmonic content of the full seed (vertical lines), set against the FEL gain bandwidth (gray).

so inhibit the saturation of other modes. Thus, for example, in the case of the full seed the

255th harmonic can never reach the same saturation intensity as in the case of the filtered

seed.

As demonstrated in the previous subsection, even this case — where seed harmonics other

than the primary seeding harmonic have an effect on FEL gain — can in fact be simulated in

a conventional SVEA-compliant FEL code, as long as the seed field is appropriately binned.

This relates to the arguments of section II, where we showed that dropping the SVEA is

not necessary even when the FEL is seeded with radiation that violates the approximation.

Indeed, the SVEA only needs to be dropped when the radiation emitted by the FEL has

a fast-varying profile — the most striking regime where this is the case is when the Pierce

parameter approaches unity, i.e. we no longer have ρ ( 1. This corresponds to very broad-

band emission, as well as significant amplification on the scale of a single undulator period.

This regime is currently under investigation, and initial studies suggest that working outside

the SVEA is indeed necessary in order to accurately simulate it.
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V. CONCLUSION

We have considered seeding of free-electron lasers with radiation pulses containing fre-

quency components that strongly violate the approximations that lead to the slowly-varyin

envelope approximation (SVEA). We have considered both ultrashort seeds whose duration

is comparable to the period of their central wavelength and also HHG radiation that consists

of a series of ultra-short spikes, the amplitude of which may vary on the scale of the resonant

FEL wavelength.

We have shown that as a result of the way seed radiation is represented and propagated

in 1-D FEL codes, SVEA code results appear to remain valid even when the seed violates

that approximation. We have confirmed this through FEL simulations carried out both with

and without the SVEA, the latter carried out using the 1-D multi-frequency non-undulator-

period-averaged code Aurora, which was in part developed for this purpose. Additional

comparisons were carried out against an analytical linearized model, again based on the

SVEA. Provided that the full broadband seed was filtered and binned appropriately prior to

being used as an input to an SVEA-based code, the three methods yield essentially identical

results. This appears true for both ultrashort and or wideband HHG seeds. We also discuss

the case where the gain bandwidth is greater than the harmonic spacing in an HHG seed.

Here there is minor impairment of output power in the primary seeded harmonic.

These results consider a single spatial dimension. While transverse effects such as radia-

tion diffraction will affect the FEL’s overall characteristics, it is unlikely there would be an

interplay between these effects and the temporal and spectral characteristics of FEL gain,

such that wideband effects are more important in 3-D than 1-D. In fact, the much greater

amount of diffraction at long wavelengths suggests that there will be an automatic high

passband filtering of HHG seeds, even further limiting non-SVEA effects.
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Appendix A: Linearized Maxwell-Vlasov Equations

Following a similar approach as in Refs. [25, 26], we derive the Green’s function for

amplification of a seed, Eq. (11). The electron bunch is characterized by the distribution

function f(Z, θ, η), where Z = kuz, θ = (k+ku)z−kct, and η = (γ−γ0)/γ0 are dimensionless

variables. The distribution’s evolution is governed by the Vlasov equation,

df =
(

∂Z + θ̇∂θ + η̇∂η

)

f = 0. (A1)

The dotted terms are derivatives of the phase space variables w.r.t. Z, correspondingly

θ̇ = 2η,

η̇ = −κB aeiθ,

where a ≡ eA/mc is the normalized field envelope. The Maxwell equation governing the

latter is

(∂Z + ∂θ) a = κM e−iθ

∫

dη f. (A2)

The two dimensionless constants are

κM =
nee2au[JJ ]

4c2γ0kkumε0
,

κB =
kau[JJ ]

2kuγ2
0

,

where ne is the peak electron density and all other parameters are as defined in Section II.

We note that κMκB = 4ρ3.

We rewrite the distribution function as f = f0 + f1, where f0 is the initial distribution

and f1 accounts for FEL-induced modulation. The shot-noise contribution is not considered

here. Linearizing Eq. (A1) results in

(

∂Z + θ̇∂θ

)

f0 = 0 (A3)

and

(

∂Z + θ̇∂θ

)

f1 = κB aeiθ ∂ηf0, (A4)
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which are valid during the start-up and exponential gain regimes, where a ( 1. Rearranging

Eq. (A4), we obtain
[

∂Z + θ̇(i+ ∂θ)
]

(e−iθf1) = κB a ∂ηf0.

We solve this in the Fourier domain, F [f(θ)] = F (ν):

F [e−iθf1] =

∫ Z

0

dZ ′ e−iθ̇(1+ν)(Z−Z′)κB F [a(Z ′) ∂ηf0(Z
′)].

Carrying out the inverse transform integrating over ν we obtain

e−iθf1 = κB

∫ Z

0

dZ ′ eiθ̇(Z
′−Z) a(Z ′, θ′) ∂ηf0(Z

′, θ′, η),

with θ′ = θ − θ̇(Z − Z ′). Finally, from Eq. (A3) f0(Z, θ, η) = f0(θ − θ̇Z, η), and thus also

f0(Z ′, θ′, η) = f0(θ − θ̇Z, η).

Substituting the above into Eq. (A2),

(∂Z + ∂θ)a = κM

∫

dη e−iθ f1

= 4ρ3

∫ Z

0

dZ ′ eiθ̇(Z
′−Z) a(Z ′, θ′)

∫

dη ∂ηf0(θ − θ̇Z, η). (A5)

This is amenable to solution via a Laplace transform, L[a(Z)] = A(s),

(s+ ∂θ)A(s, θ)− a(Z = 0, θ) = 4ρ3

∫

∞

0

dZ e−sZ

∫ Z

0

dZ ′ eiθ̇(Z
′−Z) a(Z ′, θ′)

∫

dη ∂ηf0(θ − θ̇Z, η).

Since a(θ′)f0(θ − θ̇Z) contains higher-order terms, under linearization it becomes a(θ)f0(θ):

(s+ ∂θ)A(s, θ)− a(Z = 0, θ) = 4ρ3

∫

dη ∂ηf0(θ, η)

∫

∞

0

dZ e−(s+iθ̇)Z

∫ Z

0

dZ ′ eiθ̇Z
′

a(Z ′, θ)

= 4ρ3

∫

dη ∂ηf0(θ, η)

∫

∞

0

dZ ′ e−sZ′ a(Z ′, θ)

s+ iθ̇

= 4ρ3

∫

dη ∂ηf0(θ, η)
A(s, θ)

s+ iθ̇
.

Rearranging and integrating by parts, we obtain

(s+ ∂θ)A(s, θ) = a0(θ) + i(2ρ)3A(s, θ)

∫

dη
f0(θ, η)

(s+ 2iη)2
,
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where the initial (seed) field is represented by a0(θ) = a(Z = 0, θ). Finally, we assume an

initially cold, longitudinally uniform electron beam, f0(θ, η) = δ(η):
[

s+ ∂θ −
i(2ρ)3

s2

]

A(s, θ) = a0(θ). (A6)

The solution to this equation is

A(s, θ) =

∫ θ

−∞

dθ′ exp

[(

−s+
i(2ρ)3

s2

)

(θ − θ′)

]

a0(θ
′),

and carrying out the inverse Laplace transform,

a(Z, θ) = L−1

{

exp

[

−s θ +
i(2ρ)3

s2
θ

]}

∗ a0(θ), (A7)

where ∗ represents convolution with respect to θ.

Defining χ ≡ i(2ρ)3θ, we go on to evaluate the inverse transform in Eq. (A7). From the

power series expansion
1

s
exp

( χ

s2

)

=
∞
∑

n=0

χn

s2n+1n!
,

applying the relation L−1
{

1
sn+1

}

= Zn

n! , we obtain the inverse Laplace transform

L−1

{

1

s
exp

( χ

s2

)

}

=
∞
∑

n=0

χnZ2n

n!(2n)!
≡ G(Z, θ).

Using

L−1{s F (s)} = f ′(Z) + f(0)δ(Z),

and

L−1{exp(−sθ)F (s)} = f(Z − θ)H(Z − θ),

where L−1{F (s)} = f(Z), and H is the Heaviside step function, we obtain

L−1{exp(−s θ) exp(χ/s2)}

=
∂G

∂Z
(Z − θ, θ)H(Z − θ) + δ(Z − θ). (A8)

The solution for ∂G/∂Z can be expressed in terms of the generalized hypergeometric

function, pFq,

∂G

∂Z
(Z − θ, θ) =

∞
∑

n=1

[i(2ρ)3θ]n (Z − θ)2n−1

n!(2n− 1)!

= 0F2

(

; 1, 1/2; i(2ρ3)θ Z2
)

, (A9)
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where

pFq(a1, . . . , ap; b1, . . . , bq; z) =
∞
∑

k=0

(a1)k(a2)k . . . (ap)k
(b1)k(b2)k . . . (bq)k

zk

k!
(A10)

with (a)k ≡ a(a+ 1)...(a+ k − 1); (a)0 ≡ 1.

For values of Z " π/ρ (beyond which non-linear effects manifest) and θ ∈ (0, Z), the

series in Eq. (A9) is accurately approximated by its first four terms:

∂G

∂Z
(Z − θ, θ)

≈ 8i(Z − θ)θρ3 −
16

3
(Z − θ)3θ2ρ6

−
32

45
i(Z − θ)5θ3ρ9 +

32

945
(Z − θ)7θ4ρ12. (A11)
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